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Perfect 3-colorings of some generalized Peterson graph
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Abstract

The notion of a perfect coloring, introduced by Delsarte, generalizes the concept of completely regular code. A perfect
z-colorings of a graph is a partition of its vertex set. It splits vertices into z parts P1, · · · ,Pz such that for all i, j ∈ {1, · · · , z}, each
vertex of Pi is adjacent to pij, vertices of Pj. The matrix P = (pij)i,j∈{1,··· ,z}, is called parameter matrix. In this article, we classify
all the realizable parameter matrices of perfect 3-colorings of some the generalized peterson graph.
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1. Introduction

The concept of a perfect z-coloring plays a significant role in graph theory, algebraic combinatorics,
and coding theory (completely regular codes). There is another phrase for this concept in the writing as
“equitable partition” [9]. In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in
Johnson graphs. Since then, some effort has been made to count the parameter matrices of some Johnson
graphs, including J(4, 2), J(5, 2), J(6, 2), J(6, 3), J(7, 3), J(8, 3), J(8, 4), and J(v, 3) (v odd) [3, 4, 8].

Fon-Der-Flass count the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Qn for
n < 24. He also obtained some constructions and a necessary condition for the existence of perfect 2-
colorings of the n-dimensional cube with a given parameter matrix [5, 6, 7]. In this article, we classify the
parameter matrices of all perefect 3-colorings of some generalized peterson graph.

Some generalized peterson graph including GP(7, 1), GP(8, 1), GP(8, 2) and GP(8, 3) given as follow:
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Figure 1: Some generalized peterson graph

Definition 1.1. The generalized peterson graph GP(n,k) has vertices, respectively, edges given by

V
(
GP(n,k)

)
= {ai,bi : 0 6 i 6 n− 1},

E
(
GP(n,k)

)
= {aiai+1,aibi,bibi+k : 0 6 i 6 n− 1},

Where the subscripts are expressed as integers modulo n (> 5) , and k (> 1) is the skip.

Definition 1.2. For a graph G and an integer z, a mapping T : V(G) −→ {1, 2, · · · , z} is called a perfect
z-coloring with matrix P = (pij)i,j∈{1,··· ,z}, if it is surjective, and for all i, j, for every vertex of color i, the
number of its neighbours of color j is equal to pij . The matrix P is called the parameter matrix of a perfect
coloring. In the case z = 3, we call the first color white that show by W, the second color black that show
by B and the third color red that show by R. In this article, we generally show a parameter matrix by

P =

a b c

d e f

g h i

 .

Remark 1.3. In this paper, we consider all perfect 3-colorings, up to renaming the colors; i.e. We identify
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the perfect 3-coloring with the matricesd c b

g i h

d e f

 ,

e d f

b a c

h g i

 ,

e f d

h i g

b c a

 ,

i h g

f e d

c b a

 ,

i g h

c a b

f d e

 .

Obtained by switching the colors with original coloring .

2. Preliminaries

In this section, we present some results concerning necessary conditions for the existence of perfect
3-colorings of the generalized peterson graph of GP(7, 1), GP(8, 1), GP(8, 2) and GP(8, 3) with a given
parameter matrix

P =

a b c

d e f

g h i


The simplest necessary condition for the existence of perfect 3-colorings of the generalized peterson

a+ b+ c = d+ e+ f = g+ h+ i = 3.

By using this condition and some computation, it is clear that we should consider 18 matrices .These
matrices are listed below:

P1 =

0 0 3
0 0 3
1 1 1

 , P2 =

0 0 3
0 0 3
1 2 0

 , P3 =

0 0 3
0 1 2
1 1 1

 , P4 =

0 0 3
0 2 1
1 2 0

 ,

P5 =

0 0 3
0 2 1
1 1 1

 , P6 =

0 0 3
0 2 1
2 1 0

 , P7 =

0 1 2
1 0 2
1 1 1

 , P8 =

0 1 2
1 1 1
2 1 0

 ,

P9 =

0 1 2
1 2 0
1 0 2

 , P10 =

0 1 2
1 2 0
2 0 1

 , P11 =

0 3 0
1 0 2
0 1 2

 , P12 =

1 0 2
0 0 3
1 2 0

 ,

P13 =

1 0 2
0 1 2
1 1 1

 , P14 =

1 0 2
0 1 2
1 2 0

 , P15 =

1 0 2
0 2 1
1 1 1

 , P16 =

1 1 1
1 1 1
1 1 1

 ,

P17 =

1 1 1
1 2 0
1 0 2

 , P18 =

1 2 0
1 0 2
0 1 2

 .

Theorem 2.1. [9] If T is a perfect coloring of a graph G in z colors, then any eigenvalue of T is an eigenvalue of G.

Theorem 2.2. [1] Suppose that T is a perfect 3- coloring with matrix

a b c

d e f

g h i

, in the connected graph G.Then

in this case, none of the following situations will occer.

(1) b = c = 0,
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(2) d = f = 0,

(3) g = h = 0,

(4) b = 0↔ d = 0, c = 0↔ g = 0,h = 0↔ f = 0.

Theorem 2.3. [2] Let T a perfect 3-coloring of a graph G with matrix P =

a b c

d e f

g h i

.

(1) If b, c, f 6= 0, then

|W| =
|V(G)|

b
d + 1 + c

g

, |B| =
|V(G)|

d
b + 1 + f

h

, |R| =
|V(G)|

h
f + 1 + g

c

.

(2) If b = 0, then

|W| =
|V(G)|

c
g + 1 + ch

fg

, |B| =
|V(G)|

f
h + 1 + fg

ch

, |R| =
|V(G)|

h
f + 1 + g

c

.

(3) If c = 0, then

|W| =
|V(G)|

b
d + 1 + bf

dh

, |B| =
|V(G)|

d
b + 1 + f

h

, |R| =
|V(G)|

h
f + 1 + dh

bf

.

(4) If f = 0, then

|W| =
|V(G)|

b
d + 1 + c

g

, |B| =
|V(G)|

d
b + 1 + cd

bg

, |R| =
|V(G)|

g
c + 1 + bg

cd

.

Theorem 2.4. [1] If P =

a b c

d e f

g h i

 be a parameter matrix of a k-regular graph, then the eigenvalues of P are

λ1,2 =
tr (P) − k

2
±

√(
tr (P) − k

2

)2

−
det(P)
k

, λ3 = k.

Remark 2.5. The distinct eigenvalues of the graph GP(7, 1) are the numbers 3, 1, The distinct eigenvalues
of graph GP(8, 1) are the numbers 3, 1, −1, The distinct eigenvalues of graph GP(8, 2) are the numbers 1,
3 and the distinct eigenvalues of graph GP(8, 3) are the numbers 3, 1, −1.

3. Perfect 3- colorings of some generalized peterson graph

The parameter matrices of GP(7, 1), GP(8, 1), GP(8, 2) and GP(8, 3) graphs are enumerated in the next
teorems.

Theorem 3.1. The graph GP(7, 1) has no perfect 3-colorings.

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP(7, 1) may be one of
the matrices P1, · · · ,P18. By using Theorem 2.1 and Theorem 2.4, we can see that only the matri-
ces P3,P4,P5,P6,P10,P12,P15, and P18 can be a parameter matrices. By using Theorem 2.3, matrices
P3,P6,P10,P12, and P15 cannot be a parameter matrices, because the number of white, black and red,
are not an integer. For matrix P4, each vertex with color white has three adjacent vertices with color red.
Now have the following possibilities:
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(1) T(a1) = T(a11) = W, T(a3) = T(a5) = T(a9) = T(a10) = B, T(a2) = T(a4) = T(a7) = T(a8) =
T(a12) = R then T(a2) = T(a13) = T(a14) = B, which is a contradiction with the second row of
matrix P4.

(2) T(a1) = T(a8) = T(a9) = T(a14) = B, T(a3) = W, T(a2) = T(a4) = T(a6) = T(a7) = T(a10) =
T(a13) = R then T(a5) = T(a11) = T(a12) = B, which is a contradiction with the second row of
matrix P4. Hence graph GP(7, 1) has no perfect 3-colorings with matrix P4.

Similar to matrix P4, we proof for matrix P5 and P18 as follows:
For matrix P5, each vertex with color white has three adjacent vertices with color red. Now have the

following possibilities:

(3) T(a3) = T(a6) = W, T(a7) = T(a8) = T(a12) = T(a14) = B, T(a2) = T(a4) = T(a5) = T(a9) =
T(a13) = R then T(a4) = T(a10) = R, T(a11) = B which is a contradiction with the second row of
matrix P5.

(4) T(a1) = T(a2) = T(a5) = T(a6) = T(a12) = B, T(a10) = W, T(a3) = T(a4) = T(a8) = T(a9) =
T(a11) = T(a13) = R then T(a7) = B and T(a14) = W, which is a contradiction with the second row
of matrix P5. Hence graph GP(7, 1) has no perfect 3-colorings with matrix P5.

For matrix P18, each vertex with color white has two adjacent vertices with color black. Now have the
following two possibilities:

(5) T(a1) = T(a2) = T(a3) = T(a4) = T(a5) = T(a8) = T(a12) = T(a14) = R, T(a7) = T(a9) = T(a11) =
B, T(a6) =W then T(a13) = R, which is a contradiction with the second three of matrix P18.

(6) T(a1) = T(a4) = T(a5) = T(a9) = T(a10) = T(a12) = T(a14) = R, T(a2) = T(a3) = B, T(a8) =
T(a11) = W then T(a6) = T(a7) = T(a13) = B, which is a contradiction with the second row of
matrix P18. Hence graph GP(7, 1) has no perfect 3-colorings with matrix P18.

Theorem 3.2. The graph GP(8, 1) has a perfect 3-colorings with the matrices P7 and P13.

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP(8, 1) may be one of the
matrices P1, · · · ,P18. Using the Theorems 2.1 and 2.4 matrices P3,P4,P5,P6,P7,P10,P12,P13,P15,P16 and P18
can be a parameter matrices. By using Theorem 2.3 matrices P5,P6,P7 and P13 cannot be a parameter
matrices, because of the number of white colors is not integer.

Consider the mapping T1 and T2 as follows:

T1(a1) = T1(a5) = T1(a11) = T1(a15) =W, T1(a2) = T1(a6) = T1(a12) = T(a16) = B,

T1(a3) = T1(a4) = T1(a7) = T1(a8) = T1(a9) = T1(a10) = T1(a13) = T1(a14) = R.

T2(a2) = T2(a3) = T2(a6) = T2(a7) =W, T2(a9) = T2(a12) = T2(a13) = T2(a16) = B,
T2(a1) = T2(a4) = T2(a5) = T2(a8) = T2(a10) = T2(a11) = T2(a14) = T2(a15) = R.

It is clear that T1 and T2 are perfect 3-coloring with the matrices P7 and P13 respectivehy.

Theorem 3.3. The graph GP(8, 2) has no perefect 3-colorings.

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP(8, 2) may be one of the
matrices P1, · · · ,P18. By using Theorem 2.1 and Theorem 2.4, we can see that only the matrices P3, P4, P5,
P6, P10, P12, P15 and P18 can be a parameter matrices. By using Theorem 2.3, matrices P4, P5, P10, P12, P15,
P18 cannot be a parameter matrices, because the number of white, black and red, are not an integer. For
matrix P6, each vertex with color white has three adjacent vertices with color red. Now have the following
possibilities:
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(1) T(a1) = T(a5) = T(a7) = T(a8) = T(a10) = T(a11) = T(a14) = T(a15) = R, T(a2) = T(a3) =
B, T(a6) = T(a9) = T(a13) = T(a16) = W then T(a4) = B and T(a12) = W, which is a contradiction
with the second row of matrix P6.

(2) T(a1) = T(a5) = T(a11) = T(a15) = R, T(a2) = T(a9) = T(a12) = T(a13) = W, T(a7) = T(a8) =
T(a14) = T(a16) = B then T(a3) = T(a4) = R, which is a contradiction with the three row of matrix
P6. Hence graph GP(8, 2) has no perfect 3-colorings with the matrix P6.

Theorem 3.4. The graph GP(8, 3) has no perefect 3-colorings.

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP(8, 3) may be one of the
matrices P1, · · · ,P18. By using Theorem 2.1 and Theorem 2.4, we can see that only the matrices P3, P4, P5,
P6, P7, P10, P12, P13, P15 and P18 can be a parameter matrices. By using Theorem 2.3, matrices P3, P4, P5,
P10, P12, P14, P15, and P18 cannot be a parameter matrices, because the number of white, black and red,
are not an integer. For matrix P6, each vertex with color white has three adjacent vertices with color red.
Now have the following possibilities:

(1) T(a1) = T(a3) = T(a9) = T(a13) = T(a14) = R, T(a4) = T(a10) = T(a11) = T(a15) = T(a16) =
B, T(a2) = T(a8) = T(a12) = W then T(a5) = B and T(a6) = T(a7) = R, which is a contradiction
with the three row of matrix P6.

(2) T(a1) = T(a11) = T(a13) = W, T(a3) = T(a4) = T(a7) = T(a8) = T(a15) = B, T(a2) = T(a5) =
T(a6) = T(a10) = T(a12) = T(a16) = R then T(a9) = T(a14) = R, which is a contradiction with the
three row of matrix P6. Hence graph GP(8, 3) has no prtfrct 3-colorings with the matrix P6.

Similar to matrix P6,we can proof for the matrix P7 as follows:

For matrix P7 each vertex with color white has two adjacent vertices with color red. Now have the
following two possibilities:

(3) T(a1) = T(a4) = T(a5) = T(a8) = T(a9) = T(a16) = R, T(a3) = T(a6) = T(a10) = T(a15) = B, T(a2) =
T(a14) = W then T(a7) = T(a11) = W and T(a12) = T(a13) = R, which is a contradiction with the
three row of matrix P7.

(4) T(a1) = T(a4) = T(a9) = T(a12) = W, T(a5) = T(a8) = T(a13) = B, T(a2) = T(a3) = T(a6) =
T(a7) = T(a10) = T(a11) = T(a14) = R then T(a15) = T(a16) = B, which is a contradiction with the
two row of matrix P7. Hence graph GP(8, 3) has no perfect 3-colorings with matrix P7.

Finally, we summarize the results of this paper in the following table.

Table 1: Parameter matrices of some generalized peterson graph
Graphs Parameter Matrices

graph GP(7,1) #
graph GP(8,1) P7,P13

graph GP(8,2) #

graph GP(8,3) #
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